A DIPPING GRADIENT LAYER VELOCITY MODEL FOR SOUTHERN MEXICO

D. J. S. DROWLEY**
K. G. MCNALLY***
L. GONZÁLEZ****

RESUMEN *

Datos de tiempos de viaje de ondas sísmicas fueron utilizadas para estimar un modelo de velocidades para la parte sur de México, en las vecindades de Oaxaca. El 29 de noviembre de 1978, ocurrió un fuerte temblor (Mₛ = 7.8) aproximadamente a 140 km al sur de Oaxaca, en la interfase de subducción de la placa de Cocos y la placa de Norteamérica. La red de estaciones permanentes operada por la UNAM y una red local de estaciones operada conjuntamente por la UNAM y CALTECH, registró la secuencia de precursores, el temblor principal y las réplicas. Este conjunto importante de datos ofrece una excelente oportunidad para estudiar las distribuciones espacial y temporal de la sismicidad antes y después de un gran temblor. Sin embargo, antes de realizar cualquier estudio detallado, se requiere un adecuado modelo de velocidades para una capa buzante que asegure una localización confiable de los eventos. Los tiempos de viaje de varios precursores y réplicas bien registrados fueron usados en un proceso de inversión, utilizando un algoritmo no lineal de mínimos cuadrados; se estimó un modelo de velocidades para una capa buzante con gradiente de velocidades sobre un semiespacio de velocidad constante. Resultados preliminares indican un buzamiento de la interfase de la corteza y el manto de 7° en la dirección N20° E; la profundidad de esta interfase en las cercanías de la costa es de 25 km con una velocidad de 8.186 ± .048 en el manto.

* Traducido y adaptado del resumen en inglés publicado en EARTHQUAKES NOTES 49, 4, p. 64, 1978 (nota del Editor).

** Seismographic Station, Department of Geology and Geophysics, University of California, Berkeley, California 94720, USA.

*** Seismological Laboratory, California Institute of Technology, Pasadena, California, 91125, USA.

**** Instituto de Geofísica, UNAM, México.
The November 29, 1978 Oaxaca earthquake (Ms = 7.8) and its fore-
shock and aftershock sequences were well recorded by a permanent
network of stations operated by the University of Mexico and by a local
array of stations operated jointly by the California Institute of Tech-
ology and the University of Mexico. The substantial data set provides an
opportunity to study spatial-temporal patterns of seismicity before and
after a large earthquake and new good quality information on velocities
and crustal structure at the subduction boundary between the Americas
and Cocos plates.

In this study, travel time data from well recorded aftershocks were
inverted to estimate a velocity model for both P and S waves for the
area so that later all events may be relocated and the seismicity patterns
analyzed.

The preliminary locations for the aftershocks were based on a flat
layered constant velocity model. We examined the preliminary locations
in detail by analyzing the residuals for each station and the overall
solution quality for each event. Seven well recorded aftershocks with
duration magnitudes ranging from 3.7 to 4.9 were selected for the
P model inversion, and four well recorded aftershocks ranging in magni-
tude from 3.0 to 4.3 were selected for the S model inversion.

Sixty-eight P travel times were inverted using the Levenberg-Marquardt
monlinear least squares algorithm (Levenberg, 1944; Marquardt, 1963)
to obtain a dipping gradient layer over a constant velocity half-space.
Once the P velocities and structure had been estimated, nineteen S travel
times were inverted to obtain the S velocities. The velocity results are
shown in Figure 1. The structure obtained is a crust-mantle interface
dipping approximately 7° to the northeast (Figure 2). These results are
compatible with the preliminary results of a refraction survey in 1974
(Mooney, personal communication, 1979).

Our objective is to relocate all events and examine the spatial-tempo-
ral seismicity patterns. Preliminary relocations of a few aftershocks
using the gradient model indicate that a dipping gradient layer model is
an improvement over a flat constant velocity layer model.
ACKNOWLEDGEMENTS

This research was supported in part by U. S. Geological Survey Contract No. 14-08-0001-17631. Contribution Number 3283, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125.
Figure 1. P and S velocities obtained in our travel time inversion compared to the initial flat constant velocity layer model. The depth of the crust-mantle interface shown is the depth at the reference station PGO.
Figure 2. Map showing the events used in the P travel time inversion and the structure obtained relative to the reference station PGO.
BIBLIOGRAPHY
