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Abstract

In this paper, the Wedepohl-Wilcox series, proposed for calculating ground-
return impedances of buried cables and electromagnetic transients, are 
analyzed in detail. The origin of this series goes back to the original integral 
derived by Pollaczek. To enhance the analysis developed here, a numerical 
comparison between the series, the direct numerical integration of Pollaczek 
integral, and a proposed hybrid numerical algorithm is presented in this 
paper. The latter consists on: a) the use of a vector-type efficient algorithm 
for the converging series for low frequencies, and b) trapezoidal numerical 
integration for the high frequency range. In addition, and based on the 
analysis, a criterion for switching between series and direct numerical inte-
gration is proposed here.

Resumen

En este artículo se analiza con detalle la serie de Wedepohl-Wilcox, propuesta para 
calcular impedancias de retorno por tierra de cables subterráneos, así como transito-
rios electromagnéticos. El origen de esta serie se remonta a la derivación original de 
la integral de Pollaczek. Para mejorar el análisis desarrollado aquí se presenta una 
comparación numérica entre la serie, la integración directa de la integral de Pollac-
zek y se presenta un algoritmo híbrido numérico. Este último consiste en: a) el uso 
eficiente de un algoritmo vectorizado para series convergentes en el rango de baja 
frecuencia y b) la integración numérica trapezoidal para el rango de alta frecuencia. 
Adicionalmente, basándose en este análisis, se propone un criterio para switchear 
entre la solución de la serie y la integración numérica directa.

Descriptores: 

•	 cables
•	 respuesta en frecuencia
•	 transitorios en sistemas de 
potencia

•	 impedancia de tierra
•	 modelos de retorno por tierra
•	 efecto-skin
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Introduction

One of the most important techniques, over 85 years 
old, to calculate the influence of the ground-return on 
aerial and buried electrical conductors was posted by 
Von F. Pollaczek in June 1926. In this work, Pollaczek 
presented a set of integral expressions to evaluate the 
electric field due to an infinite thin filament of current 
in the presence of an imperfect conducting ground.

Unless, Pollaczek integrals are accurate enough for 
many power applications, several authors have deve-
loped approximate methods and closed-form solu-
tions to avoid facing these rapidly increasing oscilla- 
ting integrals.

One important publication related to this topic was 
published in 1973 by Wedepohl and Wilcox, in this pu-
blication, a complete mathematical model based on the 
modified Fourier integral for the synthesis of travelling 
wave phenomena in underground transmission sys-
tems was proposed. An important contribution in 
Wedepohl and Wilcox (1973) is the solution of 
Pollaczek’s integral through a set of low frequency infi-
nite series. To the best author knowledge, an efficient 
solution of the series has not been implemented nor in-
cluded in any commercial software. Besides, it is ar-
gued that the series solution is rather complicated and 
it is better that the impedance is obtained directly from 
solving the Pollaczek’s integral, numerically.

As a first objective, and inspired on the research in 
Wedepohl and Wilcox (1973), an efficient numerical im-
plementation of the Wedepohl-Wilcox series solution is 
developed in this paper for calculating ground-return 

impedances for underground cables, which can gua-
rantee absolute convergence (Kaplan, 1981).

As a second objective, a comparison with four diffe-
rent algorithms for solving Pollaczek integral is presen-
ted for calculating electromagnetic transients. The first 
one corresponds to the originally proposed in Wede 
pohl and Wilcox (1973), i.e., solving the series for low 
frequencies and using a closed-form solution for the 
high frequency range. The second algorithm is propo-
sed here and corresponds to a hybrid one. This is based 
on the rapidly converging series for low frequencies, 
combined with trapezoidal integration of the unexpan-
ded integral expression for high frequencies (Wedepohl 
and Wilcox, 1973). The third and the fourth algorithms 
consist on trapezoidal numerical integration and 
Gauss-Kronrod routine, respectively, applied directly 
to the unexpanded and Pollaczek integral, without 
using approximating series.

As a third objective, the proposed hybrid algorithm 
is tested for a wide range of practical application cases 
on transient analysis. This is achieved by using norma-
lized dimensionless variables according to an interpre-
tation for underground cables of the application limits 
reported in (Ametani et al., 2009).

The computational analysis of the studied algo-
rithms is presented here regarding accuracy and CPU-
time.

Earth-return impedances

Basic relations

The self and mutual earth-return impedance for a qua-
si-TEMz (transversal electromagnetic with respect to 
“z” axis) mode is described by (Figure 1 for reference 
directions) Wedepohl and Wilcox (1973):
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where α is the dummy variable, w represents the angu-
lar frequency (in rad/s), m corresponds to the magnetic 
permeability (H/m) of the soil, and the complex depth 
or Skin Effect Layer Thickness (considering displace-
ment currents) is given by many authors (Pollaczek, 
1926; Wedepohl and Wilcox, 1973; Kaplan, 1981; Ame-
tani et al., 2009; Carson, 1926; Uribe et al., 2004; 2000; 
Dommel, 1986):

1/ ( )ω σ ωε ε m= + o rp j j 		  (1b)
Figure 1.  Geometry of the underground system and the image 
of one of the conductors in the air
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where σ is the ground resistivity (Ω·m) and ε is the re-
lative permittivity (ε0 for the vacuum (F/m) and εr of the 
soil).

After the second integral in (1a) is expressed via 
Bessel functions, where K0 is the Bessel function of zero 
order, thus (1a) becomes (parameters D and d are 
shown in Figure1) (Wedepohl and Wilcox, 1973):
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According to (3b) and (3d), the solution for I2 and I4 is 
given by 
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respectively, where K1 and K2 represent modified Bessel 
functions of first and second order, respectively. For I3, 
we have
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The first part of the integral in (4c) is easily evaluated 
by traditional integration; the second part corresponds 
to K2(D/p). In Wedepohl and Wilcox (1973), it is propo-

sed that the third part of (4c) be evaluated by series ex-
pansion of the exponential function and then integrated 
term-by-term to give Sser(D/p, |x|, 1), with ℓ = h + y.
That is
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The series term Sser from (4d) is further analyzed in the 
following sections.

Wedepohl-Wilcox series

Despite some typographical errors in Wedepohl and 
Wilcox (1973) regarding the converging series, these 
can be split up into the following four types of terms:

1 2 3 4( , , ) + = + +ser
DS x S S S S
p

			   (5)

S1 to S4 are displayed here differently than in Wedepohl 
and Wilcox (1973) for better clarity of programming im-
plementation, as shown in (6). For instance, an analysis 
of S1, given by (6a), reveals that the leading terms 

	 and                  k = 2, 3,...

can be stored into two separate vectors and used whe-
never is required. In addition, it can be observed in (6)-
(9) the nesting nature of the remaining terms.

It is noted that the aforementioned leading terms 
are frequency dependent whilst the nested terms de-
pend only on the geometry of the cable system.
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Second term S2

(7)

Third term S3
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Fourth term S4
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Convergence analysis

Series versus numerical integration

Consider the three cable application case reported in 
Wedepohl and Wilcox (1973) and reproduced here in 
Figure 2. For this case, the frequency range has been 
uniformly sampled from 1Hz to 10MHz by using 100 
points.

Figure 2. Underground cable transmission system, taken from 
Wedepohl and Wilcox (1973) 

As a first evaluation, we use the series proposed by 
Wedepohl-Wilcox, Sser, given by (5). The second evalua-
tion corresponds to the trapezoidal-based numerical 
integration of the third integral in (4c), labeled Sint. A 
step equal to 10–4 has been used for calculating Sint. The 
behavior of both evaluations is presented in Figure 3a. 
In this figure, the real and complex components of Sint 
are presented in black continuous dotted line. As for the 
Sser, the number of terms has been varied and the corres-
ponding result is shown in the gray dashed line. From 
the results in Figure 3a, it can be noticed that the first 
four terms of each Sn, n = 1…, 4, give a fairly good agree-
ment compared to Sint. Further evaluations including 
more than four terms did not change meaningfully the 
results given by Sser. This obeys to the theory of conver-
gence of a series around a given point (Kaplan, 1981).

Ratio test

In addition, the uniform convergence of the sequence of 
partial sums (or series solution Sn) has been calculated 
by using the following ratio test (Kaplan, 1981), for n = 
1, 2, 3, and 4
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The results of evaluating (10) are shown in Figure 3b. 
From this numerical analysis, one can observe the 
smooth behavior of the four sets of curves Sn when ap-
proximating Sser which indicates a uniform convergence 
feature, as defined in (Kaplan, 1981).

Proposed hybrid algorithm

From Figure 3a it can be seen that all four terms of the 
series give accurate results, at very low computational 
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expenses, up to D/|p| ≈ 2. Therefore, it is proposed here 
to use this number as a criterion for a hybrid algorithm 
that switches between series and numerical integration. 
This criterion contrasts to the one proposed in Wedepo-
hl and Wilcox (1973) where D/|p| = 1/4 is used to switch 
between series and a closed form solution of (2). Fur-
thermore, in the proposed hybrid algorithm, the displa-
cement current has also been accounted for, as indicated 
in (1b).

a)

b)

Figure 3.  Series convergence test, a) comparison between series 
solution and trapezoidal	
integration regarding the number of terms, b) ratio test for 
convergence (Kaplan, 1981)

The main numerical characteristics of the results that 
have been obtained for the particular underground ca-
ble system configuration in Figure 2 are general. Thus, 
it can also be extended to a broad range of cable confi-
gurations as explained in the following section.

Broad range algorithmic solution

It should be mentioned here that the earth-return impe-
dance, given by (1) has been traditionally handled by 
using true variables. That is, specific physical and geo-

metrical parameters and continuous complex frequen-
cy variables are usually involved to calculate the earth 
return impedance of the system. This consideration is 
perfectly valid when simulating a transient in that spe-
cific system.

Nevertheless, a simple change of variables, as pro-
posed here, leads to a wide range representation of the 
earth return impedance. The wide range formulation 
encloses the majority of practical cases and can be also 
used as benchmark for alternative solution methods.

Consider the following normalized dimensionless 
parameter definitions, which are graphically represen-
ted in Figure 4 (Carson, 1926; Uribe, 2004)
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After some mathematical manipulations, one obtains 
the wide-range representation of (2) as (Uribe, 2004)
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where now the term JPoll has been transformed into the 
following normalized parameter version of the Pollac-
zek integral (Carson, 1926; Uribe, 2004) 
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In obtaining (11c), the change of variable α = u/|p| has 
been applied also to (1a).

Moreover, the transformation to normalized para-
meters is of general applicability. For instance, consider 
the following closed-form expression derived by Wede-
pohl-Wilcox from the series expansion (Wedepohl and 
Wilcox, 1973)
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In the normalized parameter form, (11d) becomes now 
a function of x, c, and h, as follows (Uribe, 2004)
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2Z j log j 2 j
3 	
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Figure 4.  Dimensionless normalized vector relations between 
parameters as described first by Carson’s ground-wave 
propagation theory (Carson, 1926)

The range for both true and normalized variables is 
presented in Table 1, following the recommendations 
from (Ametani et al., 2009). Although the numerical so-
lution of (11c) can be computed, one can take the fast 
hybrid solution in true variables, as described in the 
last section “proposed hybrid algorithm”. Then, the re-
sult can be transformed into dimensionless variables by 
using (11a).

Table 1. Ranges of physical and normalized variables

True variables Description
0.5 < h, y < 100 cable conductor depth (m)

0 < x < 500 distance between cables (m)
10−4 < σ < 100 conductivity (Siemens/m)

angular frequency (rad/s)
2π<w<2π×109

Normalized parameters
10−6 < ξ < 102 defined in (11a)
10−3 < η < 104 defined in (11a)

0 < χ < 1 defined in (11a)

Figure 5 depicts the numerical solution of JPoll(x,h), 
given by (11c). This solution was obtained with the hy-
brid algorithm where 100 samples for x and 10 sam-
ples for h have been used. The results obtained by the 
Wedepohl-Wilcox algorithm, by trapezoidal integra-

tion, and by the Gauss-Kronrod algorithm can be seen 
in Appendix A.

For the numerical analysis in the next section, the hy-
brid algorithm is taken as basis. Firstly, it has a strong fun-
dament on the numerical analysis presented in section 
“series versus numerical integration”, specifically for the 
switching criterions. Secondly, it does not show numerical 
oscillations as other methods (Figure 11, Appendix A).

Computational analysis

The computational performance of the aforementioned 
methodologies for obtaining the wide range solution 
curves (as shown in Figure 5) is presented in Table 2. 
The first one corresponds to the trapezoidal integration 
applied to the third integral in (4c). The second one is 
the hybrid algorithm proposed here which uses the 
convergent series from (5) combined with trapezoidal 
integration on (4c). The third one uses the Wedepohl-
Wilcox algorithm using the convergent series at the low 
frequency range and formula (11d) or (11e) for the high 
frequency one (Wedepohl and Wilcox, 1973). Finally, 
the fourth one consists on a widely used method, i.e., 
Gauss-Kronrod, directly to the wide range formulation 
(11c) using the default absolute tolerance of 10–10 (using 
double precision format).

Table 2 resumes the rms-error (calculated in a classi-
cal form (Kaplan, 1981) and the computational times 
required by the four methods. Only the results for three 
different values of h, chosen from the curves in Figure 
5, are shown in Table 2. To obtain the results in Table 2, 
Matlab® v7.8 on a 2.4GHz processor with 8GHz RAM 
was used.

From Table 2 it can be observed that the computatio-
nal time by the Gauss-Kronrod method is larger than 
the rest of the methods (much larger for η10), as expec-
ted. The Wedepohl-Wilcox solution takes CPU times 

a)	 	 	 	 	 	       b)

Figure 5.  Wide range solution of JPoll(x ,h) calculated here with the proposed hybrid algorithm, a) real component, 	
b) imaginary component
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comparable to trapezoidal and hybrid methods; howe-
ver, its rms-error increases for larger values of h. This is 
perhaps due to the “weak” criterion for switching bet-
ween the series and the closed-formula.

Transient

A transient calculation of the underground cable sys-
tem of 5km length, shown in Figure 2, is presented in 
the following. The open circuit voltage and the short 
circuit current responses are both calculated through 
the inverse Numerical Laplace Transform (cable data 
are available in Appendix B) (Uribe et al., 2000).

A unit step voltage is injected to the core of cable 1 at 
the sending end of the underground cable system. The 
voltages at the receiving end are shown in Figure 6a for 
the energized core, while Figure 6b presents the induced 
voltages for cores 3 and 5, and sheaths 2, 4 and 6.

The currents at the receiving end are depicted in Fi-
gure 7a for the energized core 1 and in Figure 7b for the 
circulating currents.

Each core and sheath conductor of the cable system is 
coupled with each other through four different ground-
return loops.

It should be mentioned here that, when the core of 
cable 1 is energized, the magnitude of the induced vol-
tages and circulating currents for the presented test ca-
ses, become naturally smaller as the ground loop 
distances increases. In these cases, the accuracy of the 
ground-return impedance calculation becomes impor-
tant to identify electromagnetic couplings or interferen-
ce phenomena between underground and overhead 
transmission or communication systems (Carson, 1926; 
Dommel, 1986).

Hence, the ground return modeling would directly 
impact on the estimated voltage or current waveform 

Table 2. Cpu times and rms error

Trapezoidal rule on (4c)

Test methodology

Hybrid algorithm 
on (4c) and (5)

Wedepohl-Wilcox algorithm 
(5) and (11d)

Direct Gauss-Kronrod 
on (11c)

h 1

CPU time 
(Sec) 0.075400400 0.06800050 0.09360059 0.358802

rms error 0.000010414 (base) 0.03823930 0.000003

h 5

CPU time 
(Sec) 0.079000500 0.07600050 0.0780005 0.3900024

rms error 0.004299822 (base) 0.0444786 0.0006413

h 1
0

CPU time 
(Sec) 0.075400400 0.06360060 0.0936006 6.3024403

rms error 0.000000929 (base) 0.2089789 0.0071932

a)	 	 	 	 	 	                  b)
Figure 6.  Voltage step-responses at the receiving end, a) energized core of cable 1,b) induced transient responses 	
at core conductors 3, 5 and sheath conductors 2, 4 and 6
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magnitude responses and on their respective phase be-
havior.

The transient response corresponding to Figures 6 
and 7 have been also obtained with: Gauss-Kronrod di-
rect numerical integration on (11c), the EMTP methodo-
logy (Dommel, 1986) and the Wedepohl-Wilcox (1973) 
derived formula (11d).

In the EMTP methodology the evaluation of the Po-
llaczek integral JPoll in (2) is replaced by the evaluation 
of Carson’s integral (Dommel, 1986).

Figure 8a depicts the relative differences for the indu-
ced voltage of the loops formed between core-1 on core-5 
(circle 5 marker) and on sheath-6 (circle 6 marker), calcu-
lated with the aforementioned methods. Figure 8b pre-
sents the relative differences for their corresponding 
circulating currents.

As a second application case, consider again the ca-
ble transmission system from Figure 2 (Wedepohl and 
Wilcox, 1973), but now configured with a separation 
distance between cables equal to x = 5m.

The calculated induced voltages for this second stu-
dy case are shown in Figure 9a, while the circulating 
currents are presented in Figure 9b. The corresponding 
relative differences are shown in Figure 10.

The comparison of Figures 6b and 9a shows that, the 
greater the distance between cables the lower the indu-
ced voltage magnitude, as expected. For this case, the 
relative differences for the longer formed loops bet-
ween -core conductor 1 and core conductor 6 and 
sheath conductor 6 (as shown in Figures 8a and 10a) are 
more than three times bigger. This confirms that ground 
return models are highly sensitive on transient applica-
tions to the normalized parameters in (11a).

A distinct behavior is presented on the circulating 
currents in the sheath conductor 2 of the energized ca-
ble 1. The greater the distance between cables the grea-
ter the magnitude of the current. The relative differences 
shown in Figures 8b and10b indicate a poor performan-
ce at low frequencies of the ground return models for 
this example.

a)	 	 	 	 	 	         b)

Figure 8.  Relative differences for transient wave-form responses formed between loops cable core-1, cable core-5 and cable sheath-6, 
a) induced voltages, b) circulating currents

a)	   	 	 	 	 	 	   b)

Figure 7.  Current step-responses at the receiving end, a) energized core of cable 1,b) circulating current responses at core conductors 
3, 5 and sheath conductors 2, 4 and 6
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Conclusions

The Wedepohl-Wilcox original infinite series formula-
tion to approximate the ground return impedance, as 
given by Pollaczek, has been implemented and numeri-
cally analyzed in this paper.

An alternative new hybrid method, applicable for 
both real and wide range dimensionless variables, has 
also been proposed and also analyzed in this paper. 
Since the proposed hybrid algorithm can be established 
for a wide range of physical and geometrical variables, 
it can be used to define any practical application ranges 
for approximate formulas and also to assess any other 
numerical methods (based on quadrature, infinite se-
ries, conformal mapping, numerical optimization, etc.) 
for improving accuracy on transient calculations.

For many years several algorithms to calculate the 
ground impedance have also been implemented and 
applied to a transient analysis. From the obtained re-
sults, it has been noticed that a precise calculation of 
such impedance is needed to obtain accurate and relia-
ble time domain transient responses.

Appendix A

The wide range approximate solutions of Pollaczek’s 
integral calculated via the Wedepohl-Wilcox algorithm, 
trapezoidal integration, and Gauss-Kronrod algorithm, 
are depicted in Figure 11. There are some numerical os-
cillations, that are more noticeable in the real com
ponent case of the η10 curve (its value is tabulated in 

a)	 	 	 	 	 	         b)
Figure 9.  Second study case transient. Step-responses at the receiving end of the cable system, a) induced voltages, 	
b) circulating currents

a)	 	 	 	        	 	         b)
Figure 10.  Second study case. Relative differences on the transient wave-form responses for the loops formed between 	
cable core-1 with core-5 and sheath-6, a) induced voltages, b) circulating currents
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Figure 5), when applying the Gauss-Kronrod algorithm 
in the following range 10-4 < x < 100.

Appendix B

Cable design specifications for the paper transient 
application cases are depicted in Figure 12.
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Figure 12. Original cable data for the electromagnetic transient 
calculation example, taken from Wedepohl and Wilcox (1973) 

Figure 11.  Wide 
range solution 
of JApprox (x,h) 
calculated with 
approximate 
methodologies, 	
a) real 
component, 
b) imaginary 
componenta) b)


