Índices de vulnerabilidade hídrica georreferenciados: uma revisão sistemática

Contenido principal del artículo

Renan Rodrigues Campos da Silva
https://orcid.org/0009-0000-5770-1316
Jussara Ferreira-Santos
https://orcid.org/0000-0001-6310-3187
Celso Bandeira de Melo Ribeiro
https://orcid.org/0000-0001-7017-4653

Resumen

O recurso hídrico é indispensável, utilizado em quase todos os setores produtivos e ligado à manutenção metabólica de todos os seres vivos. Porém, devido a fatores como as mudanças climáticas e ao crescimento populacional, a demanda por esse recurso tem indicado um aumento substancial na superexploração bem como no agravamento de situações como as de seca. Diante disso, surgem os índices de vulnerabilidade hídrica como vanguarda na pesquisa global, auxiliando no entendimento das pressões exercidas, fomentando a criação de projetos e estratégias para a contornar essa problemática. Dessa maneira, torna-se essencial a identificação dos principais fatores que contribuem ativamente para essa tipologia de vulnerabilidade, assim como as metodologias aplicadas para a sua quantificação. Diante disso, a presente revisão sistemática teve como objetivo principal a realização da seleção e da análise de estudos relacionados a sistemas de índices de vulnerabilidade hídrica georreferenciados a nível de bacia hidrográfica, identificando os principais fatores que contribuem ativamente com a vulnerabilidade hídrica. Os resultados evidenciaram, através da realização de mapas bibliométricos, uma forte correlação entre os artigos elegidos, destacando palavras-chave como China, vulnerability, drought e fuzzy mathematics. Ainda, foi notório a presença de metodologias como a lógica Fuzzy e a Análise Hierárquica de Processos Fuzzy (FAHP), bem como a utilização de fatores naturais e socioeconômicos para o cálculo da vulnerabilidade hídrica.

Detalles del artículo

Cómo citar
[1]
Campos da Silva , R.R., Ferreira-Santos, J. y Bandeira de Melo Ribeiro, C. 2025. Índices de vulnerabilidade hídrica georreferenciados: uma revisão sistemática. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 18, 1 (abr. 2025), 61–77. DOI:https://doi.org/10.22201/iingen.0718378xe.2025.18.1.87962.

Citas en Dimensions Service

Citas

Alcamo, J., Dronin, N., Endejan, M., Golubev, G., Kirilenko, A. (2007) A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Change, 17(3-4), 429-444. https://doi.org/10.1016/j.gloenvcha.2006.12.006

Alonso, C., Gouveia, C. M., Russo, A., Páscoa, P. (2019) Crops' exposure, sensitivity and adaptive capacity to drought occurrence. Natural Hazards and Earth System Sciences, 19(12), 2727-2743. https://doi.org/10.5194/nhess-19-2727-2019

Anandhi, A., Kannan, N. (2018) Vulnerability assessment of water resources–translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: case study in Ogallala Aquifer. Journal of Hydrology, 557, 460-474. https://doi.org/10.1016/j.jhydrol.2017.11.032

Bullock, J. A., Haddow, G. D., Coppola, D. P. (2018) Homeland Security: The Essentials, 2a ed., Elsevier, Amsterdam, 438 pp.

Chen, W., Wu, S., Lei, Y., Li, S. (2017) China’s water footprint by province, and inter-provincial transfer of virtual water. Ecological indicators, 74, 321-333. https://doi.org/10.1016/j.ecolind.2016.11.037

Chhetri, R., Kumar, P., Pandey, Vishnu, P., Singh, R., Pandey, S. (2020) Vulnerability assessment of water resources in hilly region of Nepal. Sustainable Water Resources Management, 6(3), 1-12. https://doi.org/10.1007/s40899-020-00391-x

Donato, H., Donato, M. (2019) Stages for Undertaking a Systematic Review. Acta Médica Portuguesa, 32 (3), 227–235. https://doi.org/10.20344/amp.11923

Gui, Z., Chen, X., He, Y. (2021) Spatiotemporal analysis of water resources system vulnerability in the Lancang River Basin, China. Journal of Hydrology, 601, 126614. https://doi.org/10.1016/j.jhydrol.2021.126614

Haq, M., Akhtar, M., Muhammad, S., Paras, S., Rahmatullah, J. (2012) Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135-141. https://doi.org/10.1016/j.ejrs.2012.07.002

Hoekstra, A. Y., Buurman, J., Van Ginkel, K. C. (2018) Urban water security: A review. Environmental research letters, 13(5), 053002. https://doi.org/10.1088/1748-9326/aaba52

Huang, Y., Xu, L., Yin, H., Cai, Y., Yang, Z. (2015) Dual-level material and psychological assessment of urban water security in a water-stressed coastal city. Sustainability, 7(4), 3900-3918. https://doi.org/10.3390/su7043900

Jéquier, E., Constant, F. (2010) Water as an essential nutrient: the physiological basis of hydration. European Journal of Clinical Nutrition, 64, 115-123. https://doi.org/10.1038/ejcn.2009.111

Jia, X., Li, C., Cai, Y., Wang, X., Sun, L. (2015) An improved method for integrated water security assessment in the Yellow River basin, China. Stochastic Environmental Research and Risk Assessment, 29, 2213-2227. https://doi.org/10.1007/s00477-014-1012-2

Li, Y., Lin, C., Wang, Y., Gao, X., Xie, T., Hai, R., Zhang, X. (2017) Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. Journal of Cleaner Production, 161, 1143-1152. https://doi.org/10.1016/j.jclepro.2017.05.030

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., Moher, D. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine, 6(7) https://doi.org/10.1371/journal.pmed.1000100

Masroor, M., Razavi-Termeh, S. V., Rahaman, M. H., Choudhari, P., Kulimushi, L. C., Sajjad, H. (2023) Adaptive neuro fuzzy inference system (ANFIS) machine learning algorithm for assessing environmental and socio-economic vulnerability to drought: A study in Godavari middle sub-basin, India. Stochastic Environmental Research and Risk Assessment, 37(1), 233-259. https://doi.org/10.1007/s00477-022-02292-1

Nguyen, T. T., Ngo, H. H., Guo, W., Nguyen, H. Q., Luu, C., Dang, K. B., Liu, Y., Zhang, X. (2020) New approach of water quantity vulnerability assessment using satellite images and GIS-based model: An application to a case study in Vietnam. Science of the Total Environment, 737, 139784. https://doi.org/10.1016/j.scitotenv.2020.139784

Ouzzani, M., Hammady, H., Fedorowicz, Z., Ahmed, E. (2016) Rayyan - a web and mobile app for systematic reviews. Systematic Reviews, 210(5) https://doi.org/10.1186/s13643-016-0384-4

Sadeghravesh, M. H., Khosravi, H., Ghasemian, S. (2015) Application of fuzzy analytical hierarchy process for assessment of combating-desertification alternatives in central Iran. Natural hazards, 75, 653-667. https://doi.org/10.1007/s11069-014-1345-7

Salvacion, A. R. (2023) Delineating village-level drought risk in Marinduque Island, Philippines. Natural Hazards, 116(3), 2993-3014. https://doi.org/10.1007/s11069-022-05795-w

Satish Kumar, K., AnandRaj, P., Sreelatha, K., Sridhar, V. (2021) Regional analysis of drought severity‐duration‐frequency and severity‐area‐frequency curves in the Godavari River Basin, India. International Journal of Climatology, 41(12), 5481-5501. https://doi.org/10.1002/joc.7137

Shi, W., Xia, J., Gippel, C. J., Chen, J., Hong, S. (2017) Influence of disaster risk, exposure and water quality on vulnerability of surface water resources under a changing climate in the Haihe River basin. Water International, 42(4), 462-485. https://doi.org/10.1080/02508060.2017.1301143

Sun, F., Kuang, W., Xiang, W., Che, Y. (2016) Mapping water vulnerability of the Yangtze River Basin: 1994–2013. Environmental management, 58, 857-872. https://doi.org/10.1007/s00267-016-0756-5

Van Eck, N. J., Waltman, L. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Varis, O., Kummu, M., Salmivaara, A. (2012) Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Applied Geography, 32(2), 441-454. https://doi.org/10.1016/j.apgeog.2011.05.003

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Bunn, S. E. G., Sullivan, C. A., Liermann, C. R., Davies, P. M. (2010) Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440

Wijitkosum, S., Sriburi, T. (2019) Fuzzy AHP integrated with GIS analyses for drought risk assessment: A case study from upper Phetchaburi River basin, Thailand. Water, 11(5), 939. https://doi.org/10.3390/w11050939

Wu, B., Ma, Z., Yan, N. (2020) Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote sensing of environment, 244, 111813. https://doi.org/10.1016/j.rse.2020.111813

Zadeh, L. A. (1965) Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Zhang, C., Li, J., Zhou, Z., Sun, Y. (2021) Application of ecosystem service flows model in water security assessment: A case study in Weihe River Basin, China. Ecological Indicators, 120, 106974. https://doi.org/10.1016/j.ecolind.2023.110687