Índices de vulnerabilidade hídrica georreferenciados: uma revisão sistemática
Contenido principal del artículo
Resumen
O recurso hídrico é indispensável, utilizado em quase todos os setores produtivos e ligado à manutenção metabólica de todos os seres vivos. Porém, devido a fatores como as mudanças climáticas e ao crescimento populacional, a demanda por esse recurso tem indicado um aumento substancial na superexploração bem como no agravamento de situações como as de seca. Diante disso, surgem os índices de vulnerabilidade hídrica como vanguarda na pesquisa global, auxiliando no entendimento das pressões exercidas, fomentando a criação de projetos e estratégias para a contornar essa problemática. Dessa maneira, torna-se essencial a identificação dos principais fatores que contribuem ativamente para essa tipologia de vulnerabilidade, assim como as metodologias aplicadas para a sua quantificação. Diante disso, a presente revisão sistemática teve como objetivo principal a realização da seleção e da análise de estudos relacionados a sistemas de índices de vulnerabilidade hídrica georreferenciados a nível de bacia hidrográfica, identificando os principais fatores que contribuem ativamente com a vulnerabilidade hídrica. Os resultados evidenciaram, através da realização de mapas bibliométricos, uma forte correlação entre os artigos elegidos, destacando palavras-chave como China, vulnerability, drought e fuzzy mathematics. Ainda, foi notório a presença de metodologias como a lógica Fuzzy e a Análise Hierárquica de Processos Fuzzy (FAHP), bem como a utilização de fatores naturais e socioeconômicos para o cálculo da vulnerabilidade hídrica.
Detalles del artículo
Citas en Dimensions Service
Citas
Alcamo, J., Dronin, N., Endejan, M., Golubev, G., Kirilenko, A. (2007) A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Change, 17(3-4), 429-444. https://doi.org/10.1016/j.gloenvcha.2006.12.006
Alonso, C., Gouveia, C. M., Russo, A., Páscoa, P. (2019) Crops' exposure, sensitivity and adaptive capacity to drought occurrence. Natural Hazards and Earth System Sciences, 19(12), 2727-2743. https://doi.org/10.5194/nhess-19-2727-2019
Anandhi, A., Kannan, N. (2018) Vulnerability assessment of water resources–translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: case study in Ogallala Aquifer. Journal of Hydrology, 557, 460-474. https://doi.org/10.1016/j.jhydrol.2017.11.032
Bullock, J. A., Haddow, G. D., Coppola, D. P. (2018) Homeland Security: The Essentials, 2a ed., Elsevier, Amsterdam, 438 pp.
Chen, W., Wu, S., Lei, Y., Li, S. (2017) China’s water footprint by province, and inter-provincial transfer of virtual water. Ecological indicators, 74, 321-333. https://doi.org/10.1016/j.ecolind.2016.11.037
Chhetri, R., Kumar, P., Pandey, Vishnu, P., Singh, R., Pandey, S. (2020) Vulnerability assessment of water resources in hilly region of Nepal. Sustainable Water Resources Management, 6(3), 1-12. https://doi.org/10.1007/s40899-020-00391-x
Donato, H., Donato, M. (2019) Stages for Undertaking a Systematic Review. Acta Médica Portuguesa, 32 (3), 227–235. https://doi.org/10.20344/amp.11923
Gui, Z., Chen, X., He, Y. (2021) Spatiotemporal analysis of water resources system vulnerability in the Lancang River Basin, China. Journal of Hydrology, 601, 126614. https://doi.org/10.1016/j.jhydrol.2021.126614
Haq, M., Akhtar, M., Muhammad, S., Paras, S., Rahmatullah, J. (2012) Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135-141. https://doi.org/10.1016/j.ejrs.2012.07.002
Hoekstra, A. Y., Buurman, J., Van Ginkel, K. C. (2018) Urban water security: A review. Environmental research letters, 13(5), 053002. https://doi.org/10.1088/1748-9326/aaba52
Huang, Y., Xu, L., Yin, H., Cai, Y., Yang, Z. (2015) Dual-level material and psychological assessment of urban water security in a water-stressed coastal city. Sustainability, 7(4), 3900-3918. https://doi.org/10.3390/su7043900
Jéquier, E., Constant, F. (2010) Water as an essential nutrient: the physiological basis of hydration. European Journal of Clinical Nutrition, 64, 115-123. https://doi.org/10.1038/ejcn.2009.111
Jia, X., Li, C., Cai, Y., Wang, X., Sun, L. (2015) An improved method for integrated water security assessment in the Yellow River basin, China. Stochastic Environmental Research and Risk Assessment, 29, 2213-2227. https://doi.org/10.1007/s00477-014-1012-2
Li, Y., Lin, C., Wang, Y., Gao, X., Xie, T., Hai, R., Zhang, X. (2017) Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. Journal of Cleaner Production, 161, 1143-1152. https://doi.org/10.1016/j.jclepro.2017.05.030
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., Moher, D. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine, 6(7) https://doi.org/10.1371/journal.pmed.1000100
Masroor, M., Razavi-Termeh, S. V., Rahaman, M. H., Choudhari, P., Kulimushi, L. C., Sajjad, H. (2023) Adaptive neuro fuzzy inference system (ANFIS) machine learning algorithm for assessing environmental and socio-economic vulnerability to drought: A study in Godavari middle sub-basin, India. Stochastic Environmental Research and Risk Assessment, 37(1), 233-259. https://doi.org/10.1007/s00477-022-02292-1
Nguyen, T. T., Ngo, H. H., Guo, W., Nguyen, H. Q., Luu, C., Dang, K. B., Liu, Y., Zhang, X. (2020) New approach of water quantity vulnerability assessment using satellite images and GIS-based model: An application to a case study in Vietnam. Science of the Total Environment, 737, 139784. https://doi.org/10.1016/j.scitotenv.2020.139784
Ouzzani, M., Hammady, H., Fedorowicz, Z., Ahmed, E. (2016) Rayyan - a web and mobile app for systematic reviews. Systematic Reviews, 210(5) https://doi.org/10.1186/s13643-016-0384-4
Sadeghravesh, M. H., Khosravi, H., Ghasemian, S. (2015) Application of fuzzy analytical hierarchy process for assessment of combating-desertification alternatives in central Iran. Natural hazards, 75, 653-667. https://doi.org/10.1007/s11069-014-1345-7
Salvacion, A. R. (2023) Delineating village-level drought risk in Marinduque Island, Philippines. Natural Hazards, 116(3), 2993-3014. https://doi.org/10.1007/s11069-022-05795-w
Satish Kumar, K., AnandRaj, P., Sreelatha, K., Sridhar, V. (2021) Regional analysis of drought severity‐duration‐frequency and severity‐area‐frequency curves in the Godavari River Basin, India. International Journal of Climatology, 41(12), 5481-5501. https://doi.org/10.1002/joc.7137
Shi, W., Xia, J., Gippel, C. J., Chen, J., Hong, S. (2017) Influence of disaster risk, exposure and water quality on vulnerability of surface water resources under a changing climate in the Haihe River basin. Water International, 42(4), 462-485. https://doi.org/10.1080/02508060.2017.1301143
Sun, F., Kuang, W., Xiang, W., Che, Y. (2016) Mapping water vulnerability of the Yangtze River Basin: 1994–2013. Environmental management, 58, 857-872. https://doi.org/10.1007/s00267-016-0756-5
Van Eck, N. J., Waltman, L. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Varis, O., Kummu, M., Salmivaara, A. (2012) Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Applied Geography, 32(2), 441-454. https://doi.org/10.1016/j.apgeog.2011.05.003
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Bunn, S. E. G., Sullivan, C. A., Liermann, C. R., Davies, P. M. (2010) Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440
Wijitkosum, S., Sriburi, T. (2019) Fuzzy AHP integrated with GIS analyses for drought risk assessment: A case study from upper Phetchaburi River basin, Thailand. Water, 11(5), 939. https://doi.org/10.3390/w11050939
Wu, B., Ma, Z., Yan, N. (2020) Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote sensing of environment, 244, 111813. https://doi.org/10.1016/j.rse.2020.111813
Zadeh, L. A. (1965) Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zhang, C., Li, J., Zhou, Z., Sun, Y. (2021) Application of ecosystem service flows model in water security assessment: A case study in Weihe River Basin, China. Ecological Indicators, 120, 106974. https://doi.org/10.1016/j.ecolind.2023.110687

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.